Two-Step SPLADE

Carlos Lassance (now at Cohere) Hervé Dejean Stéphane Clinchant Nicola Tonellotto

Two-Step SPLADE

- What is the best we can do with a fixed model and tools?
 - o Pruning helps, but not so much
- Take lessons from dense
 - Approximate search (First Step) + Rescoring (Second Step)
 - Two-Step
- TLDR:
 - o Pruning and saturation leads to a good approximation of the SPLADE vector

So simple, ElasticSearch went with this option concurrently to us

Two-Step SPLADE

Two-Step SPLADE (ElasticSearch)

```
GET /my-index/ search
"query": {
                                                                   non-frequent or critical tokens
  "bool":
    "should": [
      {"term": {"tokens": {"value": "<kept token 1>", "boost": <kept weight 1>}}},
       {"term": {"tokens": {"value": "<kept token 2>", "boost": <kept weight 2>}}},
"rescore": {
  "window size": 50,
  "query" : {
                                                                           frequent and non-critical tokens
    "rescore query" :
      "bool": {
         "should": [
           {"term": {"tokens": {"value": "<dropped token 1>", "boost": <dropped weight 1>}}},
           {"term": {"tokens": {"value": "<dropped token 2>", "boost": <dropped weight 2>}}},
                                      score = 1 x ("query kept taken 1 weight" x "doc kept taken 1 weight" +
    "query weight" : 1,
                                                  "query kept token 2 weight" x "doc kept token 2 weight" + ... ) +
    "rescore query weight" : 1
                                              1 x ("query dropped token 1 weight" x "doc dropped token 1 weight" +
                                                  "query dropped token 2 weight" x "doc dropped token 2 weight" + ...)
```

How is it different from the state of art?

- Completely redesign training for efficiency
 - Efficient-SPLADE (Ours, SIGIR 2022) -> Bad OOD, needs retraining
- Approximate Sparse retrieval
 - Pruning (Ours, SIGIR 2023) -> Minor efficiency gains
 - Sketching (Bruch et al ACM 2023) -> Needs new tooling
 - NeurIPS 2023 Big ANN Benchmark -> Hard to add new documents
- Modify the inverted index algorithm -> Need new tooling
 - Guided Traversal (Mallia et al, SIGIR 22) -> Our main point of comparison
 - Guided Traversal ++ (Qiao et al, WWW and SIGIR 23)
 - Postings Clippings (Mackenzie et al, EMNLP 22)

Does it work in practice? (average)

Does it work in practice? (relative, 30 datasets)

		Effect size against				MSMARCO		BEIR		Lotte
	Method	SPLADE (b)		GT (d)		Latency		18	>1M	
		$ \geq (>)$	<	$ \geq (>)$	<	Average	p99	Av	G L	AvG L
Baselines										
\mathbf{a}	$\mathrm{BM}25$	7 (1)	23	7 (1)	23	1.0	1.0	1.0	1.0	1.0
b	SPLADE-v3	N/A	A	27 (16)	3	19.1	12.4	24.8	32.6	22.1
Advanced Baselines										
\mathbf{c}	Approx. First Step (Pruning) over (b)	7 (1)	23	16 (2)	14	0.7	0.4	2.3	2.6	2.6
$^{\mathrm{d}}$	GT (Our Implementation) $(a \to b)$	14 (3)	16	N/A		1.1	1.0	1.2	1.2	1.3
This work										
	Two-Step $(c \to b)$	22 (0)	8	26 (15)	4	0.8	0.4	2.5	2.7	3.0

See you at the poster section

For code:

https://github.com/carlos-lassance/splade/tree/two_step/two_step

