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Supervised classification with DNNs

State of the art on various tasks, from NLP to computer vision:
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Input: x Parameters: θ ŷ “ fpx, θq Targets: y

Goal: Search θ to minimize Cross Entropy (CE) between y and ŷ
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Motivation

Problems
Forces all examples of the same class to have the same output:

Highly-deformed space may lead to less robust classification;
Choses arbitrarly the targets (one-hot embedding);

Disregards initialization and inputs;
Output dimension is equal to the number of classes:

Problem in continual learning;

Desired Properties
Property No Collapse:

Do not collapse the outputs of the same class.
Property Learned Outputs:

Output must be chosen by the learning algorithm.
Property Arbitrary Output Size:

Output dimension must be an hyperparameter.
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Motivation
Related Work

Works Properties
Method Reference No Collapse Learned Outputs Arbitrary Output Size

One-hot embedding ——
Distillation [Hinton et al 2015] X
Error correcting codes [Dietterich & Bakiri 1994] X
Triplet Loss [Hoffer & Aillon 2015] X X

Smoothness X X X
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Smoothness cost function
Setup

Batch input: X Parameters: θ Outputs: fpX, θq “ ŷGraph: G “ pV,W q, V “ ŷ

Goal: Search θ so that the class labels
are smooth on the graph G
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Smoothness cost function
Graph inference

Batch input: X Parameters: θ Graph: G “ pV,W q, V “ ŷ

Goal: Search θ so that the class labels
are smooth on the graph G
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Smoothness cost function
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Experiments
2D Visualization CIFAR-10 dataset
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Experiments
Classification

Sanity check comparison between CE and Smoothness;

Loss Classifier CIFAR-10 CIFAR-100 SVHN
Cross-entropy Argmax 5.06% 27.92% 3.69%
Smoothness 1-NN 5.63% 29.17% 3.84%
Smoothness 10-NN 5.48% 28.82% 3.34%
Smoothness RBF SVC 5.50% 30.55% 3.40%
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Experiments
Robustness

Robustness benchmark [Heynckes & Dietterich 2019];
Relative performance to a baseline.
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Experiments
Robustness

Cost function Clean test error MCE relative MCE
Cross-entropy 5.06% 100 100
Smoothness 5.63% 95.28 90.33
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Conclusion and Future work

Conclusion
Similar performance to cross entropy;
More degrees of freedom;
Increased Robustness.

Future work
Increase performance on clean settings;
Stronger link between loss function and classification algorithm;
Continual training.

Extended article available at: http://arxiv.org/abs/1905.00301.
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Smoothness cost function
Graph signal processing background

Graph
Based on the similarities between the outputs of the network.

G “ xV,Wy

Wpµ, νq “ exp p´α}fpxrµsq ´ fpxrνsq}q

xrµs, xrνs P V

Graph signal smoothness

σpG, sq “ sJLs “
ÿ

xrµs,xrνsPV

ÿ

Wrµ, νs psrµs ´ srνsq2 , (1)

L: Laplacian operator (L “ D´W);
s: Signal on the graph.

In this work equivalent to an one-hot embedding (y).
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Smoothness cost function

Cost function
Sum of similarities between elements of different classes:

Lsmoothnesspf, V q “
ÿ

xrµs,xrνsPV
yrµsyrνs“0

exp p´α}fpxrµsq ´ fpxrνsq}q .
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Cross entropy + One hot embedding

Supervised Classification
Loss: Categorical cross entropy;
Output: One-hot embedding.

Categorical cross entropy

Lcepf,Dq “
ÿ

px,yqPD

c
ÿ

i“0

yilog pfpxqiq

One-hot embedding

yi “

#

1, if i “ c

0, otherwise
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Supervised classification with DNNs

State of the art on various tasks, from NLP to computer vision:
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