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1. Context
DNNs achieve state of the art performance on various tasks [1];
How?: they absorb stats of data through millions of parameters;
Drawback: they are easily fooled (adversarially or randomly) [2,3,4];
Reasoning: exagerated deformation of space around class boundaries;
Proposal: enforce smooth deformations via regularization;
Three steps:
1 Generate similarity graphs of the intermediate representations of the network;
2 Compute class indicator vector signal smoothness [6] over the graphs;
3 Penalize unsmooth transitions over successive layers.

2. Perturbations

Random perturbations (from [2])
Gaussian Noise Shot Noise Impulse Noise Defocus Blur Frosted Glass Blur

Motion Blur Zoom Blur Snow Frost Fog

Brightness Contrast Elastic Pixelate JPEG

Adversarial attacks (using the method from [3])
Original Additive Noise (x10) Adversarial Image

Deer 99.96% Cat 36.63% Cat 90.66%

3. Illustration
Initial problem:

Class domains boundary

No regularization:
dilating: contracting:

Proposed
regularization:

Figure: Consider the problem of classifying circles and crosses (top). Without use of
regularizers, one may considerably stretch the boundary regions (bottom left), or push
the inputs closer (bottom center). The first case may lead to sharp transitions while the
second reduces the classification margin. Forcing small variations (bottom right), we
ensure the topology is not dramatically changed in the boundary regions.

4. Methodology
Add a regularization term to the loss function:

1: procedure SMOOTHNESS(activations`, s,m)
2: M`← Pairwise cosine similarity of activations`
3: D`← Diagonal degree matrix of M`

4: L`← D` −M`

5: σ`← Trace(sᵀ(L`)ms)
6: return σ`
7: end procedure
8: procedure LOSS(listactivations, y, s,m, γ)
9: for activations` ∈ listactivations do

10: σ`← Smoothness(activations`, s,m)
11: end for
12: ∆←

∑`max
i=1 |σi−σi−1|
`max−1

13: return CategoricalCrossEntropy(s, y) + γm∆
14: end procedure

5. What power of the Laplacian to use?
Analysis: effect of Laplacian powers on similarity graphs.
Conclusion: higher powers of the Laplacian→ better visualization.
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Figure: Comparison of Laplacian and squared Laplacian of similarity graphs.

6. Smoothness evolution
Analysis: smoothness evolution under different training methods.
Conclusion: square laplacian leads to a finer control of the evolution.
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Figure: Evolution of smoothness of label signals. Regularized networks yield flatter
curves, therefore changes in smoothness are smaller. This implies that average
distances between examples in distinct classes remain almost constant.

Full article available at https://arxiv.org/abs/1805.10133

7. Experiments

We compare our method against vanilla CNNs and [5] on three datasets:

CIFAR-10 CIFAR-100 Imagenet32
Model C [2] [3] GN C GN [4] C GN
Vanilla 12% 100% 99.3% 48% 21% 87% 80% 47.9% 63.2%
Parseval [5] 10% 104% 99.2% 50% 20% 85% 78% 51.9% 65.9%
Ours 13% 98% 89.6% 39% 21% 84% 77% 47.6% 62.6%

Table: Median test set error rate on various dataset states. [2] is a relative measure
against the baseline. GN is the test set perturbed with Gaussian Noise, C is the clean
test set. Smaller values are better.

7. Conclusion
We proposed a regularizer to increase neural network robustness,
Our method enforces signal smoothness over intermediate
representation similarity graphs to restrict boundary deformations,
The proposed method outperforms vanilla CNNs and [5].

8. Future work
We would like to better understand the robustness with a more
theoretical analysis,
Instead of training the network from zero, use the regularizer as an
ad-hoc post training step,
Extend the evaluations to other domains in machine learning.
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