
Predicting Under and Overfitting in Deep Neural
Networks using Graph Smoothness
Carlos Eduardo Rosar Kos Lassance1, Vincent Gripon1 & Antonio Ortega2
1IMT Atlantique, Brest, France: firstname.lastname@imt-atlantique.fr

2University of Southern California, Los Angeles, CA: firstname.lastname@usc.edu

Abstract—Deep Neural Networks (DNNs) have become the state-
of-the-art in many machine learning benchmarks. Important ques-
tions remain about understanding the reason for their performance
and how to choose the right architecture for a given problem.
In this paper we study the use of Graph Signal Processing
(GSP) tools to predict under and overfitting without the need
to rely on crossvalidation. Namely, we generate graphs using
intermediate representations of training examples at different
layers across the architecture, and we analyse the smoothness of
label signals on these graphs. We perform experiments varying the
hyperparameters of the network as well as the size of the dataset
and show there exists a correlation between the smoothness gap
across some layers and overall accuracy of the corresponding DNN.

I. INTRODUCTION

Deep Neural Networks (DNNs) have become the state-of-
the-art in many machine learning benchmarks ever since the
AlexNet [6] won the ILSVRC-2012 competition. Due to the
fact they rely on millions of trainable parameters, DNNs remain
black-box methods. As a consequence, there is little under-
standing of the reasons for their generalization abilities and
finding the best hyperparameters for a given problem requires
to exhaustively search a lot of combinations.

It is often considered that architectures that are not optimal
for a given problem suffer either from what is called underfitting
or overfitting. Underfitting typically refers to conditions where
increasing the number of trainable parameters in some parts of
the architecture would lead to better generalization performance.
To the contrary, overfitting refers to conditions where the
network is containing too many parameters and despite being
very efficient at classifying the training set, it fails when facing
unseen examples.

To avoid underfitting and overfitting often boils down to
performing crossvalidation, where a fraction of the training set
– called validation set – is extracted to assess the generalization
performance of a DNN trained on the remaining fraction of the
training set. However, this requires to reduce the size of the
training set, thus leading to globally poorer accuracy, and it
does not guarantee the architecture will be the best for a set
distinct from the validation one.

Graph signal processing (GSP) [7] is a recent framework
which aims at extending classical harmonic analysis techniques
to domains that can be defined by graphs. In previous work [1],
[2], GSP has been used to analyse DNNs. In this paper, we
are interested in showing that graph smoothness can be used to
predict underfitting and overfitting in Deep Neural Networks.

II. SMOOTHNESS GAP

First we formally define what we call smoothness gap. We
follow the notations from [2]. Let us consider M example

inputs for each of the C classes which we then use to generate
intermediate representations across a given trained DNN.

In the remaining of this work, we shall denote y`c,i the
intermediate representation of the i-th input of class c and at
the output of layer `, following Python’s notation (where −1
means last layer and −2 penultimate layer). From a collection
of signals

(
y`c,i
)
c,i

we derive a similarity graph. As such, each
signal is associated one-to-one with a vertex. We call label
signal a binary vector sc ∈ RCM , where all coordinates are
zero but the ones mapped to signals belonging to that class.

We introduce G` =
〈
V,A`

〉
the weighted graph at layer `

where:

V = {(c, i), 1 ≤ c ≤ C, 1 ≤ i ≤M}

A`
(c,i)(c′,i′) = cos(y`c,i, y

`
c′,i′)

Note that we chose to use the cosine similarity after perform-
ing experiments with various other metrics such as Manhattan,
Euclidean and/or Manahalobis [8], [4]. One of the main aspects
that was important to us is that the cosine similarity is bounded
by default.

We then introduce the k-nearest neighbor graph G`,k =〈
V,A`,k

〉
associated with G` =

〈
V,A`

〉
where A`,k is obtained

from A` by keeping only values that are among the k largest
ones on their row or on their column. As a consequence, note
that A`,k contains less than 2MCk nonzero elements. Choosing
the correct value of k is a well known problem and the results
can be quite sensitive to this decision.

Denote by L`,k the combinatorial Laplacian of the graph G`,k

and L> the transpose of the matrix L. We call smoothness of
the label signal sc on the graph G`,k the quantity s>c L

`,ksc.
Smoothness of a label signal is a direct measure of how well the
examples of this class are separated from the other classes. Since
there are multiple classes, we are more interested in the global
label smoothness σ` =

∑
c s
>
c L

`,ksc. A global label smoothness
of 0 indicates pairs of examples belonging to distinct classes are
not connected through G`,k or are completely orthogonal.

In order to compare smoothness of a given signal on various
graphs with possibly very different weightings, we choose to
normalize smoothness by its maximum possible value. In our
case, we rather use an upperbound which is 2MCk.

In [2], the authors suggest that the smoothness gap in the
last layers of the network is a good proxy to how underfit-
ted/overfitted the considered DNN is. As a consequence, we
use the measure:

δs =
σ−3 − σ−2
2MCk

.



III. EXPERIMENTS

A. Details

For experiments, we use PreActResNet18-inspired DNNs [3]
trained on a portion of the CIFAR-10 dataset [5]. To estimate
label smoothness, we sample 50 examples from each class to
generate our graphs (M = 50 and C = 10). We repeat this
sampling 10 times. The results reported are the mean label
smoothness over the 10 graphs. To artificially create underfitting
and overfitting conditions, we proceed as follows:
• Overfitting: we use only a portion of the training set

ranging from 21% to 99% by 2% increments. Smaller
values result in highly overfitted DNNs,

• Underfitting: convolutional layers come with a hyperpa-
rameter which is the number of feature maps. In order
to easily vary the number of trainable parameters without
changing the global architecture, we thus vary the number
of feature maps. In the chosen architecture, the number of
feature maps on the first convolutional layer determines all
the others. We thus vary it from 5 to 64, its default value.

We considered various values of k (10, 20,M = 50,MC =
500). Most consistent results were obtained with a value of 20.
Using 10 would incur on a lot of points being concentrated
with approximately zero smoothness. This is not surprising as
it tends to select only the very nearest neighbors. Using M or
MC leads to a lot of noise in the measures as there are many
more pairwise distances to take into consideration.

B. Results

In Figure 1 we show that by varying the size of the dataset
we can generate highly overfitted DNNs. Moreover, there is a
correlation between generalization abilities reported by the test
accuracy score and the smoothness gap δs. We stressed this fact
by computing a linear regression and obtained a R2 coefficient
of 68%.

We also obtained a strong correlation between the test accu-
racy and the smoothness gap δs in the case of underfitted DNNs.
We computed a linear regression and obtained a R2 coefficient
of 84%.

These results show a very high predictability of the test error
given the smoothness gap δs. This is very interesting as the com-
putation of the smoothness gap does not require any knowledge
about the test set. Note that for the overfitted condition, the
architecture contains exactly the same number of parameters
each time. To the contrary, for the underfitted condition, the
performance of the network could be directly derived from
the number of parameters (R2 = 50%). In order to be sure
that our measure was not only an indirect measure of the size
of the penultimate layer, we performed additional experiments
where the number of feature maps at each layer is changed
independently, resulting in almost no correlation between global
number of parameters and test accuracy (R2 = 14%), while still
maintaining the correlation between the smoothness gap and test
accuracy (R2 = 67%). Results are depicted in Figure 2.

IV. CONCLUSION

In this paper we have shown via experiments that there exists
a strong correlation between smoothness gap and generalization
abilities in deep neural networks. Future work includes further

testing and understanding why the training set smoothness
is correlated withs the test set accuracy, using this measure
explicitly when performing hyperparameter search, and studying
how to use this measure during the training phase.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·10−3

0.7

0.75

0.8

0.85

smoothness gap

te
st

se
t

ac
cu

ra
cy

Figure 1. Results generated by varying the size of the dataset.

0 0.2 0.4 0.6 0.8 1
·10−2

0.8

0.82

0.84

0.86

0.88

Smoothness Gap

Te
st

Se
t

A
cc

ur
ac

y

0 1 2 3
·10−3

0.82

0.84

0.86

0.88

Smoothness Gap

Te
st

Se
t

A
cc

ur
ac

y

0 0.2 0.4 0.6 0.8 1 1.2
·107

0.8

0.82

0.84

0.86

0.88

Network Parameters

Te
st

Se
t

A
cc

ur
ac

y

0.8 1 1.2 1.4 1.6
·107

0.82

0.84

0.86

0.88

Network Parameters

Te
st

Se
t

A
cc

ur
ac

y

Figure 2. Results generated by varying the size of the DNNs. The right column
shows results where the size of feature maps is changed independently, while
the left column the feature maps depend on the size of the first convolutional
layer. While the upper row shows the correlation between the number of
trainable parameters and the network performance, while the lower row shows
the correlation between the smoothness gap and network performance. The
brown lines are linear regressions.

REFERENCES

[1] R. Anirudh, J. J. Thiagarajan, R. Sridhar, and T. Bremer. MARGIN:
Uncovering Deep Neural Networks using Graph Signal Analysis. ArXiv
e-prints, November 2017.

[2] V. Gripon, A. Ortega, and B. Girault. An Inside Look at Deep Neural
Networks using Graph Signal Processing. to appear in ITA 2018.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity
mappings in deep residual networks. In European Conference on Computer
Vision, pages 630–645. Springer, 2016.

[4] Eamonn Keogh and Abdullah Mueen. Curse of dimensionality. In
Encyclopedia of Machine Learning and Data Mining, pages 314–315.
Springer, 2017.

[5] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features
from tiny images. 2009.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems, pages 1097–1105, 2012.

[7] Antonio Ortega, Pascal Frossard, Jelena Kovačević, José MF Moura,
and Pierre Vandergheynst. Graph signal processing. arXiv preprint
arXiv:1712.00468, 2017.

[8] Pourya Zadeh, Reshad Hosseini, and Suvrit Sra. Geometric mean metric
learning. In International Conference on Machine Learning, pages 2464–
2471, 2016.


	Introduction
	Smoothness Gap
	Experiments
	Details
	Results

	Conclusion
	References

